Chapter 6: Application of Derivatives I

MATH1520 University Mathematics for Applications Fall 2021

Learning Objectives:

(1) Apply L’'Hopital’s rule to find limits of indeterminate forms.

(2) Discuss increasing and decreasing functions.

(3) Define critical points and relative/absolute extrema of real functions of 1 variable.
(4) Use the first derivative test to study relative/absolute extrema of functions.

6.1 Limits of indeterminate forms and L’Hopital’s rule

Recall the Remark in the end of Section 2.4 regarding exceptional cases of limits, which can
not be computed using the algebraic rules of limits in Proposition 2, but the limits might still
exist. Limits of this type are said to be of indeterminate forms.

olo
818

6.1.1 Limits of indeterminate forms

b

Consider lim M,
z—a g(x)

1. if lim f(z) = A, lirr%) g(x) = B #0, A, B € R, then by the quotient rule,
>

T—a

o f@ _ BmIEa
P g(z)  limg(x) B’

r—a
2. if lim f(z) = lim g(z) =0 (£o0), then the quotient rule is not applicable. Limits of
Tr—a r—a

. . . . 0 00
this type are said to be of indeterminate form type 0 or type 55

For example,
I 2 -1 o 0
x1—>n11 $3 - 17 typ O

z+1 . —x+1 00
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00
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0
Theorem 6.1.1 (I’Hopital’s rule for limits of types 0’ ﬁ).
(0. @]

Let f(x), g(x) be differentiable and suppose that ¢'(x) # 0 near the point a.

If
lim f(z) = limg(z) =0 or lim f(z) = lim g(z) = +o0,

r—a Tr—ra r—a T—a

@) @
P g@) (@)

then

(b) The statement of the theorem still holds if “+ — «” is replaced by “x — 4+00” or “z — a™”.

It also holds if lim,_,, f(x) = +00 :(1:11)% g(z) = Foo. (Use lim,_,, ggg — —limy ., gJ(Cg(Cﬂ)ﬁ) and

apply the theorem to lim,_., %{Ej)ﬂ).)

Example 6.1.1. Limits of type g

1.
21 0
lim xs (check condition 1: =)
r—1 xr° — 0
2z .. C e .. 2
=lim — (check condition 2: this limit is =)
z—1 312 3
2 \ I3 2
T3 o= M Sx
"70!0 BJ N> \
Remark. Alternatively, use the “canceling common factors” trick in the previous chap-
ters.
2.
li e (the limit is of type 9)
ng V7 — typ 0
T e’ - r
= ~ L =
2 ﬁ‘) ﬁll/la krwd’- V< (Q,\ X
=2e.
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In(1 2
im 2D e O ‘
z—0t x 0
1 _ dbnu
= lim 1=
z—0+ 2T d %
= —|— o0
dx U
00 2 &4
E le 6.1.2. Limits of type —
xample imits of type — _ A
X
1.
im 2 1 (type E)
z—+oo 2z 4 3 P 00
. -1
= lim —
x—+oo 2
__1
=3
Remark. The same result can be obtained by dividing both the numerator and the
denominator by .
2.
li Inx €N (type —)
x—1>I-|I—1c>o xn 1 yP
1
= lim T
r—+oo N
1 <
= lim — —_ Jum N
r—4o00 ™ N V(L\/l an ,
=0. & —o
%o b e
(et o v ] to
Remark. Ing =+ < W=’ 3 i
= ¥ .

) ITTA ) : 1 . ,)%M A [
1. L’Hopital’s rule cag S_I?T beé applied fo(l; djt{:)rlmmellte form + £ %\(B'W " )
For example, lim1 +2:§,but 1iml( —1—2)’212 . ! 7,\2* g yfhan %
€T Tr—r

!
2. If lim f(z) is still 9, @, then repeat L’Hopital’s rule.
z—a g'(x) 0" o0

3. L’Hopital’s rule can be used to justify the previous assertion that as = — oo, higher de-
gree polynomials “grows faster” than lower degree polynomials; exponential functions
grow faster than any polynomials; log functions grow slower than any polynomials.
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Lim (x=) =0 = Lim gy x

Exercise 6.1.1.

=T X2
oz —1 + (7 Fio - — A ,.L.__ N
. - 7 [l - L/‘V] - =
Lm =1 e Ty Hephl X7 % o X =
2. lm — =0
X o0 €
0
\/V(f\ﬂ'vn/\ ﬁth‘Q — =0 whnn=o ﬁim'é?:o when n>¢
le 6 I 1*6?1 e & e
Example 6.1.3. (A ng L’Hoépital’s rule twice. - X
P (Applying L'Hopi wice.) i, & = o = bim &
. et —e T -2 0 Se N5
:}:13}) 22 (type 6) "’\PP% {,ﬁ),\, fal ¢ "442»
et +e -2 ) 0 )
_ e —_ . N "’\\
_ili% " ( still of type 0) = LM ,__?LX ,i@g
S xAte € it
=lim —
250 2 — 9 aw{;m
=0 kl L%\:?r\u\ LH’J)(‘?J
vapant: rdles
Féﬁ L‘x ﬂfd{ﬂ

6.1.2 Other Indeterminate Forms: 0 - oo, oo — 0o, 0%, 1°°, oc®
0
All these forms can be converted to forms of types 5 or .

Example 6.1.4. Type 0 - co
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Example 6.1.5. Type co — oo

Example 6.1.6. Types 1°°, o0, 0"

Trick: f9=enf? = e9lnf

So,

. 1 0
lim zz =e” = 1.
r—r—+00

1
lim zT-= (1%°)
r—1t
1
— lim e 7
r—1+
. Inz
lim
:eI—)]."' ]. — X
bl
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So
’ 1

So,
lim 2% =% = 1.
r—0t

6.2 Monotonicity of Functions and the First Derivative Test fal -

NI "j £ 9 ’
6.2.1 Monotonicity: Increasing/Decreasing Functions butr not 6 Ky
g OH/'T ”“"ag
Definition 6.2.1. Let f(x) be a function defined on (a,b). Then
<lso St d {n et q /
1. f(z) is increasing (or positively monotone) on the interval if f(x2) > f(x1) whenever

xr9 > 1.
2. f(z) is strictly increasing (or strictly positive monotone) on the interval if f(x2) >

f(xz1) whenever xg > x;.
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\

3. f(x) is decreasing (or negatively monotone) on the interval if f(z2) < f(x1) whenever
To 1.

4. f(z) is strictly decreasing (or strictly negative monotone) on the interval if f(x2) <
f(x) whenever xo > 7.

5. f(x) is (strictly) monotone if f(x) is either (strictly) positively monotone or (strictly)
negatively monotone.

Caveat! The preceding definition is the mathematicians’ definition of increasing/decreasing
functions. However, some calculus texts define increasing/decreasing functions differently,
e.g. [Hoffmann et al.], where “increasing/descreasing functions” refer to the “strictly
increasing/descreasing functions” defined above. Similarly, some text refers to what we
called “strictly monotone/monotone” above as “monotone/weakly monotone”.

) y —f(?/ O

y=f® -~ cymgxh&
{L(S (Kg

o) === f faep
X)) +————— |
Joy) T flxy)
| |
} | | t > X > X
a x; x b a x X, b
(a) f(x) is increasing ona <x < b (b) f(x) is decreasing ona < x < b

Theorem 6.2.1. Let f be a differentiable function on (a,b).

1. If f'(x) > O for all = € (a,b), then f(x) is an increasing function.

() (a,b) (z)

2. If f'(z) > 0 for all x € (a,b), then f(x) is a strictly increasing function on (a, b).
(x) <0 forall z € (a,b), then f(x) is a decreasing function.
() (a,b) ()

3. If fl(x

4. If f'(z) <0 for all x € (a,b), then f(x) is a strictly decreasing function on (a,b).
Example 6.2.1. Show that f(z) = e* — x — 1 is a strictly increasing function on (0, o).
Solution. f'(z) =e*—1>1—1=0. So f(x) is a strictly increasing function. [

Remark. Because f(x) is a strictly increasing function, f(z) > f(0) =0 for z > 0, i.e.

e >1+zx, forz > 0.
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Negative
slopes

Positive

slopes
} I X | | x
a b a b
(a) f'(x)>0ona<x<b, (b) f'(x) <0ona<x<b,
so f(x) is increasing. so f(x) is decreasing.

Procedure to determine intervals of increase/decrease of f
(LQ, OV””CCL \JMI)(S :"£

1. Find all ¢ such thatG’(c) =0or f'(c)is undeﬁne} Divide the line into several intervals.
2. For each intervals (a, b) obtained in the previous step.
(@) If f'(z) > 0, f(x) is a strictly increasing function (1) on (a, b).
(b) If f'(x) <0, f(x) is a decreasing function (}) on (a, b).
/\ <
@\mi%
Example 6.2.2. Find the intervals in which the function

f(x) =223 4322 — 122 — 7 '
X~ —

is strictly increasing/strictly decreasing.

Solution.
fl(x)=62>+6x—12=6(x+2)(z—1)=0 =az=-21

So we have 3 intervals: (—oo, —2), (=2, 1), (1,00).

In(—o00,—-1), 2z4+1<0,z—1<0, sof'(z)>0.
In(-1,1), a+1>0z—1<0, sof(z)<0.
In(l,400), x+1>0,z—1>0, so f'(z)>0.

T (_ ) _2) -2 (_27 1) 1 (11 +OO)
f(x) + 0 — 0 +
monotonicity T + T
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Figure 6.1: y = 22% + 322 — 122 — 7

Exercise 6.2.1. Find the intervals of strict increase and strict decrease of the function
f(z) = 2" —22° + 23,
2 . w0 whem |[x >E
-3 > ||z -

Zz
/;(f)ﬁ/muD o > ey, 1<l >
F(@) = 7251024302 = 22(722—3)(a2~1) =0 = = 0,1 and =+ >~ £0.654654.
g

Solution.

X0 i X £0 —-J%"eoc‘-\w\"‘l‘ = b(ﬁ-[ WA -
v (=00, ~1) | (=1, —/3) (L, +00)
f'(@) + - T
monotonicity T 1 T
vt

Figure 6.2: y = 27 — 22° + 23
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Definition 6.2.2. Let f(z) be a real-valued function defined on (a, ). A number ¢ € (a,b) is
called a critical point of f if f/(¢) = 0 or f/(¢) does not exist.
The corresponding value f(c) is called a critical value for f(x).

Remark. The notion of critical points applies to more general functions, e.g. real functions
of several variables, complex functions etc. A critical point always lies in the domain of
the function. In the special case of real-valued functions of a single real variable, a critical
point is a real number; therefore it is also called a critical number. Let f(z) be a real-valued
function of a single real variable, and ¢ € R be a critical point of f. Let C C R? be the graph
of f in the x — y plane. The point (¢, f(c)) € C'is a critical point of the function 7, : C' = R
given by (z,y) — y.

Example 6.2.3. {'tx) - i x  wlen xz ©
fx) = ||. ¥ ol =0
We have proved
-1, x <0,
f'(xz) = { does not exist, x =0,
1, x > 0.

= critical number: z = 0;  corresponding critical value: 0

x (—00,0) | 0 | (0,+00)
f'(x) - b +
.. S
monotonicity i} nfl, 1
0 . exy

Example 6.2.4. f(z) = 2* — 423. Find all critical points and increasing & decreasing
intervals.

Solution.
fl(z) =42® —122° = 42*(2 -3)=0 = 2=0,3.
20 whew x £
critical points: x=0,3
corresponding critical values:  f(0) =0, f(3) = —27

z (=00,0) | 0| (0,3) | 3] (3,4+0)
f(x) - 0 - 0 +
monotonicity 4 1 T
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6.2.2 Maxima & Minima of Functions

Definition 6.2.3. Let f(x) be a real-valued function with domain 7. We say

1. f(z) has a relative maximum (or local maximum) at z = c if f(¢) > f(x) for all
x € I near c.

2. f(z) has a global maximum (or absolute maximum) at z = cif f(¢) > f(z) for all
x el

Similar definition for relative/global minimum.

Both maximum and minimum are called an extremum.

. A absolute max (global max)
relative max (local max) _

VA S~
~_ /
\

/ - .
absolute min (global min) relative min (local min) .
and locd wmin. bul wot slbos A
Remark. Global extremum = Local extremum
But Global extremum < Local extremum

Remark. There is some confusion in the literature regarding whether a (local or global)
maximum/minimum of a function refers to an element in the domain or its corresponding
value (in the range). For most literature, the (absolute) maximum of a real function f(x)
refers to the value: M € R is said to be the (absolute) maximum if there exists an element c in
the domain D of f such that f(x) < f(c) Vo € D. To be clear, say that M is an (absolute)
maximum value of f; and f attains its (absolute) maximum at c. Say e.g. f has local maxima
at xy,x2,... € D, with corresponding values f(z1), f(z2),.... Similarly for the notions of
(absolute/local) minimum.

Remark. Absolute maxima/minima may not exist. Consider the e.g. the function f : (0,1] —
R given by f(z) = z. This f has an absolute maximum but has no absolute minimum. A
general notion is supremum/infimum. In the above example, the supremum of f is 1 and its
infimum is 0.

S O .

wm RN

ho absslify mincmuna
LWCCY\) cav) be “Vayaw‘éafdsc » ©
Lol tRene 3s no ( cuch, HRaf o0
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Question I: How to find relative extrema?

Theorem 6.2.2 (First Derivative Test: Relative Extrema).
Let f(x) be a continuous function which is differentiable where x # c. Then
1. f(z) attains a relative maximum at x = c if near the point c,
f'(x)>0 forz<c f(z)<0 forz>ec.
2. f(x) attains a relative minimum at x = c if near the point c,
fl(z)<0 forz<e f(x)>0 forx>ec.
3. f(x) attains no relative extremum at x = c if near the point ¢, f’(x) has the same sign on

two sides of c.

Ay Ay

f'(x)<0 f'(x)>0

¥
¥

¢ Minimum ¢ Maximum

Aly lly
No maximum or minimum No maximum or minimum

¥

Sign of f/(x) Sign of f'(x)
Property to the left of ¢ to the right of ¢
Relative maximum + —
Relative minimum — +
Not a relative extremum + +

Not a relative extremum — —
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Theorem 6.2.3. Let ¢ € (a,b) and let f be a continuous function on (a, b) such that f’ exists
and is continuous on (a,b)\{c}. Then f attains a relative extremum at x = c¢ = cisa
critical number; i.e. f'(c) = 0or f'(c) does not exist.

Remark. f attains a relative extremum at x = ¢ < ¢ is a critical number.
For example, f(z) = 23, f/(z) = 322, so z = 0 is a critical number. But f’(x) > 0 on two
sides of x = 0, so f does not have a relative extremum at 0.

Example 6.2.5. Let
f(z) =223 + 322 — 122 — 7.

Find all its relative maxima and relative minima.

Solution. Refer to the answer of Example 6.2.2, f/(x) = 622 + 62 — 12. The critical numbers

are solutions of f'(z) =0,i.exz = —2and z = 1.
v | (o0, —2) | =2 ] (=2,1) [ 1] (1, +o0)
f(x) + 0 — 0 +
T lacal ! -
A, ¢
(point where a relative maximum occurs, corésponding vélﬁle)w Y (=2, f(-2)) = (—2,13)
(point where a relative minimum occurs, corresponding value): (1, f(1)) = (1,14)
|
r
Example 6.2.6. PG@ - {
1. For Example 6.2.3 f(z) = |z|.

One critical number: z = 0, One relative minimum at 0, with corresponding value O.

—_——

2. For example 6.2.4 f(x) = 2* — 423,
critical numbers: x = 0,3, one relative minimum at 3, with corresponding value
—27.

Exercise 6.2.2. Let
fz) =27 —22° + 2.

(see Exercise 6.2.1) Find all relative maxima and relative minima of f.

Answer:

_ Jew x<@
+ phaw x>0
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(point where a relative maximum occurs, corresponding value) :

(~1 F(-1)) = (~1,0): (\/2, (/) = (0.655,0.092)

(point where a relative minimum occurs, corresponding value) :

(/3. 1(—/9) = (-0.655,-0.002): (1, £(1)) = (1,0).
Note that f has no relative extremum at 0.

Question II: How to find absolute Max/Min?

Theorem 6.2.4. Suppose f : [a,b] — R is a continuous function, then the absolute maximum
point and absolute minimum point exist for the graph of f (Theorem 3.2.2 Extreme Value
Theorem).

Remark. Note that the preceding theorem applies only when the domain of f is a closed finite
interval!
Procedures to find absolute max/min of continuous function f on [a, b]

1. Find all the critical numbers c;, ¢s, ..., in (a, b).

2. Compute the values f(a), f(b), f(c1), f(c2), ...,
The maximum value corresponds to the absolute max.
The minimum value corresponds to the absolute min.

Example 6.2.7. Find the absolute maximum and absolute minimum of f(x) = ° — 80x on
[—3,4].

Solution. Since f(z) is continuous on [—3,4], the absolute max/min can be reached by
extreme value theorem. , 3—(7\‘4_‘ (,) = SQZ"’_QO (- LF) = (K¢ Q&fzé@ ’2’3
fl(x)=52"-80=0 = z=-22

Compute

f(=2) =128, f(2)=-128,< abs: wen |
F(=3)= =3, f(4)=T04,— tbco) )t o o

The absolute minimum is —128, attained at x = 2; the absolute maximum is 704, attained at
T = 4.
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00 [
300 |
200

100

-100

Figure 6.3: y = 2° — 80x over [—3, 4]

o =il defiaad o (-, =]
6 e cv;(';LPJL F‘;V'\— S k=0
‘r'(a) _ o &— cbemiy. oAfained af =2

T0 = _

£G) = 2. &~ abs max, pfeinel of 17>
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Chapter 7: Application of Derivatives II

Learning Objectives:

(1) Discuss concavity.

(2) Use the sign of the second derivative to find intervals of concavity.
(3) Locate and examine inflection points.

(4) Apply the second derivative test for relative extrema.

(5) Determine horizontal and vertical asymptotes of a graph.

(6) Discuss and apply a general procedure for sketching graphs.

7.1 Concavity and points of inflection

Intuitively: On the z — y plane: when a curve, or part of a curve, has the shape:

/\ Cen cave,

we say that the shape is concave downward. On the other hand, if it takes the shape

\/ cowNek

we say that it is concave upward.

Remark. In some textbooks “concave upward” is called concave up or convex; “concave
downward” is called concave down or concave.

Definition 7.1.1. If the function f(x) is differentiable on the interval (a, b), then the graph
of fis

7-1
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G\W: g l\/ conN E,‘F)
(i) strictly concave upward on (a,b) if f/(x) is strictly increasing on the interval. In
particular, if f is second-differentiable, the condition is equivalent to f”(x) > 0.
G brdly Gnpave N | .
(ii) strlctiy cogcave ggwn ard on (a,b) if f/(x) is strictly decreasing on the interval. In
particular, if f is second-differentiable, the condition is equivalent to f”(z) < 0.

. conVLg) N . . o
(iii) concave upward on (a,b) if f/(x) is increasing on the interval. In particular, if f is
second-differentiable, the condition is equivalent to " (x) > 0.

Ci
(iv) co%cca% dov\\é%)ard on (a,b) if f'(x) is decreasing on the interval. In particular, if f is
second-differentiable, the condition is equivalent to f”(x) < 0.

In case (i)/(iii), the function f is said to be strictly convex/convex; in case (ii)/(iv), [ is said
to be strictly concave/concave.

Remark. 1. In some calculus texts, what we called “strictly convex/concave” above is
called “convex/concave”, and what we called “ convex/concave” above is called “weakly
convex/concave”

2. General definition of convexity/concavity of continuous curves on a plane via secant
lines:

e For a closed curve C' C R?: C is strictly convex if all secant lines to C lies in the “inside”
except for the end points. e.g. A circle is strictly convex.

E.g. A piecewise convex curve:

e For the graph C' of a continuous function f on the x — y plane: f is concave if all secant

lines to the graph do not intercept the “upside component” of R?\C. E.g. C = {(z,y) | f(z) =

1
—, x <0}
.I'x }
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A test for shapes of graphs:

m =0

As z increases, f'(z) is |
f"(x) = —2 < 0 for strictly concave downward curve.

m =20

As z increases, f'(z) is T
1" (x) =2 > 0 for strictly concave upward curve.

Definition 7.1.2. If f(x) changes strict concavity at some point ¢ in the domain, then the
point (¢, f(c)) on the z — y plane is called an inflection point of the graph of f.
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Procedure for Determining Intervals of Concavity & Inflection Points:

Suppose the function f(z) is such that f” is piecewise continuous.

1. Find all ¢ for which f”(¢) = 0 or f”(c) does not exist, and divides the domain into
several intervals.

2. For each interval,

e if /”(x) > 0, the graph of f(x) is strictly concave upward. (L.e. f is a convex
function.)

o if f”(x) <0, the graph of f(x) is strictly concave downward. (I.e. f is a concave
function.)

3. For all ¢ found in step 1,

e if /”(x) changes sign on two sides of ¢, then (¢, f(c¢)) is an inflection point on the
graph of f;

e otherwise, (¢, f(c)) is not an inflection point on the graph of f.

Example 7.1.1.
fla) =2’ +1

fflx)y=6z=0 = 2x=0.

e if x <0, f(x) <0,= f is strictly concave on (—o0,0);

e ifx >0, f'(x) >0, = f is strictly convex on (0, c0).

Since f”(x) changes signs on both sides of x = 0, (0, 1) is the unique inflection point on the
graph of f.

Example 7.1.2. Describe the concavity and find all inflection points of the graph of f(z) =
228 — 5zt + 7w — 3.

Solution.
N QYA %
" (z) = 60z — 602% = 602%(2® — 1) = 602%(z — 1)(z+1) =0 = z=0,=£1.
N e
7% when xx0
x (—00,0) | =1 | (=1,0) |0 (0,1) 1| (1,400)
1" (x) + 0 — 0 - +
concavity | up(—) down(—~) down(—~) up(~)
L ' .
Two inflection points: (—1,—13) ~ i flechon ?h oL
((0,—3) is not an inflectiorrpointl) %C*‘) =2-5-11-2
= —\2
¥ _l —_ —~ —
¢ v ¢ > £Q) =207
—\ 0 -

+ [
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T T T
0.5 1 1.5

Remark.

c is a critical point <  f’(¢) =0or f'(c) does not exist
2 - L
c is a critical point {:} /' changes sign at ¢ E«_j, 'F(}() =X X=0 & & Ciriheal

+(-:,g73— JOCSA\—[/L‘ F"—\
(¢, f(¢)) is an inflection point on the graph of f <= f” changes sign at ¢ ‘;i <fo

1" s
= 0 or undefined
/ } f (C)

i (2]

(¢, f(c)) is an inflection point on the graph of f {

Theorem 7.1.1 (The Second Derivative Test: Relative Extrema).
O chanyet from + 0 = > loca) vy

Suppose f'(a) = 0! -
17 — + e ﬂgcc\l wn N
1. If f"(a) < O, then f has a relative maximum at a.
2. If f"(a) > 0O, then f has a relative minimum at a.

3. If f"(x) = 0, we have no conclusion.
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Voo AL N

relative min relative min relative max relative max

f'(a) =0  f’(a) does not exist f’(a) does not exist  f’(a) =0
1st test: - + - + + - + -
2nd test:  f"(a) >0 Not Applicable Not Applicable f(a) <0
Example 7.1.3.
_ 1l e 1 4
flz) = 0% " 1* -
Use the first and second derivative test to study the relative extrema.
1 > € v {
Solution. \_TX (‘/\—3 _(—l -"I?/_-{-D - Je f
1 " 1 ) ) 5 ° ) *
oy — .5+ 3_ 13 O ]2y _ ]2 2
fi(z)=-x 3T = £ (x + 3)(1‘ 3) = =z 3,0, 3
f"(x) = 2*(x 4+ 1)(z - 1).
= X" = K(2A)
2
v (oo =y | o5 (/50 0 (0,/3) N RV )
f(x) - 0 + 0 - 0 +
SIS " r 1 —
" "0 2|l =0 o+ >0 ¢t /¢
f"(@) f 1) / (2)) >0 20
1st test: relative min relative max relative min
2nd test: relative min inconclusive relative min

Exercise 7.1.1. Apply the first and the second derivative tests to find the local max-

3

ima/minima and the global maximum/minimum of f(z) = z° — 3.
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Chapter 7: Application of Derivatives IT

7.2 Curve sketching

Example 7.2.1. Sketch the graph of y = f(z) = 1 + 1.

Solution.

Step 1. Analyze f(x).

1. domain: {z € R|z # 1}
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2. z,y intercepts: Fry=\t to=0

Let x =0, then y = 0;
— _L__ ) é_ =
Lety = 0,then z = 0. > \* ¥~ > x=0

= only one intercept: (0,0)

3. vertical and horizontal asymptotes:

lim+ f(z) = 400, lim f(x) =—00 = vertical asymptote: z =1
z—1 rz—1—
ll)r_il_l fz) =1, EI_II flz)=1 = horizontal asymptote: y = 1.

Step 2. Analyze f'(x).
1

f(z) = —m,x # 1.

1. interval where f is strictly increasing: none  (f’(z) < 0 in the domain)
interval where f is strictly decreasing: (—oo, 1), (1, +00)
2. critical points of f: none (x = 1 is not in the domain)

3. relative extrema of f: none

Step 3. Analyze f”(z).

f(z) = 2 5,7 # 1.

(z —1)

1. interval where f is strictly convex: (1,+00) (f” > 0)
interval where f is strictly concave: (—oco0,1) (f” < 0)

2. inflection points on the graph: none (z =1 is not in the domain)
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