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Chapter 6: Application of Derivatives I

Learning Objectives:
(1) Apply L’Hôpital’s rule to find limits of indeterminate forms.
(2) Discuss increasing and decreasing functions.
(3) Define critical points and relative/absolute extrema of real functions of 1 variable.
(4) Use the first derivative test to study relative/absolute extrema of functions.

6.1 Limits of indeterminate forms and L’Hôpital’s rule

Recall the Remark in the end of Section 2.4 regarding exceptional cases of limits, which can
not be computed using the algebraic rules of limits in Proposition 2, but the limits might still
exist. Limits of this type are said to be of indeterminate forms.

6.1.1 Limits of indeterminate forms
0

0
,
1
1

Consider lim
x!a

f(x)

g(x)
,

1. if lim
x!a

f(x) = A, lim
x!b

g(x) = B 6= 0, A,B 2 R, then by the quotient rule,

lim
x!a

f(x)

g(x)
=

lim
x!a

f(x)

lim
x!a

g(x)
=

A

B
.

2. if lim
x!a

f(x) = lim
x!a

g(x) = 0 (±1), then the quotient rule is not applicable. Limits of

this type are said to be of indeterminate form type
0

0
or type 1

1

For example,

lim
x!1

x2 � 1

x3 � 1
,

✓
type

0

0

◆

lim
x!+1

x+ 1

2x+ 3
, lim

x!+1

�x+ 1

2x3
,

⇣
type

1
1

⌘
.
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Theorem 6.1.1 (L’Hôpital’s rule for limits of types
0

0
,
1
1).

Let f(x), g(x) be differentiable and suppose that g0(x) 6= 0 near the point a.

If
lim
x!a

f(x) = lim
x!a

g(x) = 0 or lim
x!a

f(x) = lim
x!a

g(x) = ±1,

then
lim
x!a

f(x)

g(x)
= lim

x!a

f 0(x)

g0(x)
.

Remark. (a) An intuitive explanation: When f(a) ⇡ 0 ⇡ g(a),

f(x)

g(x)
⇡ f(x)� f(a)

g(x)� g(a)
=

f(x)�f(a)
x�a

g(x)�g(a)
x�a

.

(b) The statement of the theorem still holds if “x ! a” is replaced by “x ! ±1” or “x ! a±”.
It also holds if limx!a f(x) = ±1 lim

x!a
g(x) = ⌥1. (Use limx!a

f(x)
g(x) = � limx!a

�f(x)
g(x) and

apply the theorem to limx!a
�f(x)
g(x) .)

Example 6.1.1. Limits of type
0

0

1.

lim
x!1

x2 � 1

x3 � 1
(check condition 1:

0

0
)

= lim
x!1

2x

3x2
(check condition 2: this limit is

2

3
)

=
2

3
.

Remark. Alternatively, use the “canceling common factors” trick in the previous chap-
ters.

2.

lim
x!1

ex � ep
x� 1

(the limit is of type
0

0
)

= lim
x!1

ex

1
2x

� 1
2

=2e.

Foa.!¥→Y¥

A Antient rule . __li×m→, = e

¥¥±÷ I.
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3.

lim
x!0+

ln(1 + x)

x2
(type

0

0
)

= lim
x!0+

1
1+x

2x

=+1.

Example 6.1.2. Limits of type
1
1

1.

lim
x!+1

�x+ 1

2x+ 3
(type

1
1)

= lim
x!+1

�1

2

=� 1

2
.

Remark. The same result can be obtained by dividing both the numerator and the
denominator by x.

2.

lim
x!+1

lnx

xn
, n 2 N (type

1
1)

= lim
x!+1

1
x

nxn�1

= lim
x!+1

1

nxn

=0.

Remark.

1. L’Hôpital’s rule can NOT be applied for determinate form.

For example, lim
x!1

x+ 1

x+ 2
=

2

3
, but lim

x!1

(x+ 1)0

(x+ 2)0
=

1

1
= 1.

2. If lim
x!a

f 0(x)

g0(x)
is still

0

0
,
1
1 , then repeat L’Hôpital’s rule.

3. L’Hôpital’s rule can be used to justify the previous assertion that as x ! 1, higher de-
gree polynomials “grows faster” than lower degree polynomials; exponential functions
grow faster than any polynomials; log functions grow slower than any polynomials.

talk 'd u=µx

=
dlnu

d-I
= d%÷ ¥, =-D . I

= ¥

Ñ previously ,
when n<

m

him ¥4m =°
lnx → to slower than any

✗
"

d>
0 ✗→

tb

=L in
-m

+
→ es

"

no ✗
→
+0,

×
" grows

slower
than

✗
M
"
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Exercise 6.1.1.

1. lim
x!1

x� 1

lnx
= 1

2. lim
x!+1

xn

ex
= 0

Example 6.1.3. (Applying L’Hôpital’s rule twice.)

lim
x!0

ex � e�x � 2x

x2
(type

0

0
)

= lim
x!0

ex + e�x � 2

2x
( still of type

0

0
)

= lim
x!0

ex � e�x

2

=0

6.1.2 Other Indeterminate Forms: 0 ·1, 1�1, 00, 11, 10

All these forms can be converted to forms of types 0
0 or 1

1 .

Example 6.1.4. Type 0 ·1

lim
x!0+

(x lnx) (0 ·1)

= lim
x!0+

lnx
1
x

(
1
1)

= lim
x!0+

1
x

� 1
x2

= lim
x!0+

(�x)

=0.

comparative growth rate :

lnx < ✗
"

< Ñ< é
Loi)

fig, 1×-4=0
__ limenx

✗→ I

tqpe"%"nyIt:pita ¥7,¥=¥yx=l
when.co?fi#usMe-x--lim0-ex--O-uhenn--olim1-ex--owhenn-0X-tb✗→ to

limit -_ +b- = lime

III. E- É→×)=o n→• uns

apply uitnpitals rule.
lim Ñ= 0

no
= dim net'={ Oif

""

da, = -
É ✗→ to e-×

otherwise

ein @+E-
2) =° =D apply

+
→ 0 by L' ttpital L' Hospital
eying.tn

)=° repeated. rule 's

again

limx-olgi.mg,lnx= -0✗→of

him ¥ = to
✗-70-1
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Example 6.1.5. Type 1�1

lim
x!0+

✓
1

x
� 1

ex � 1

◆
(1�1)

= lim
x!0+

ex � 1� x

x(ex � 1)
(
0

0
)

= lim
x!0+

ex � 1

ex � 1 + xex
( still

0

0
)

= lim
x!0+

ex

ex + ex + xex

=
1

2
.

Example 6.1.6. Types 11,10, 00

Trick: fg = eln fg
= eg ln f

1.

lim
x!+1

x
1
x (10)

= lim
x!+1

eln(x
1
x )

= lim
x!+1

e
1
x lnx

=e
lim

x!+1

1

x
lnx

,

lim
x!+1

1

x
lnx (0 ·1)

= lim
x!+1

lnx

x
(
1
1)

= lim
x!+1

1
x

1

=0.

So,
lim

x!+1
x

1
x = e0 = 1.

2.

lim
x!1+

x
1

1�x (11)

= lim
x!1+

e
1

1�x lnx

=e
lim

x!1+

lnx

1� x ,

link = -10 him¥,
-_ to

✗→ d- ✗→ Ot

1%+4-1--0=0
. it - ¥5k¥3,- ✗ let-17=0

¥%←(e×-11=0

¥%+le×-1-1×5=0

' ✗ = een ×

xtx-e.mx#=ei-.lnx.

I use the fact that é
is continuous

CT = -1×4×7 c= bin Y

line of = ee
✗→ to

y→c

✗ = elnx
x¥=e4¥
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lim
x!1+

lnx

1� x
(
0

0
)

= lim
x!1+

1
x

�1

=� 1.

So,
lim

x!1+
x

1
1�x = e�1.

3.

lim
x!0+

xx (00)

= lim
x!0+

ex lnx

=e
lim

x!0+
x lnx

,

lim
x!0+

x lnx (0 ·1)

= lim
x!0+

lnx
1
x

(
1
1)

= lim
x!0+

1
x

� 1
x2

= lim
x!0+

(�x)

=0.

So,
lim

x!0+
xx = e0 = 1.

6.2 Monotonicity of Functions and the First Derivative Test

6.2.1 Monotonicity: Increasing/Decreasing Functions

Definition 6.2.1. Let f(x) be a function defined on (a, b). Then

1. f(x) is increasing (or positively monotone) on the interval if f(x2) � f(x1) whenever
x2 > x1.

2. f(x) is strictly increasing (or strictly positive monotone) on the interval if f(x2) >
f(x1) whenever x2 > x1.

Hi
incraaijy . foxy

Egg
.

but not
a Xz .

strictly increasing
EI fix)=x is increasing
also strictly increasing

\
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3. f(x) is decreasing (or negatively monotone) on the interval if f(x2)  f(x1) whenever
x2 < x1.

4. f(x) is strictly decreasing (or strictly negative monotone) on the interval if f(x2) <
f(x) whenever x2 > x1.

5. f(x) is (strictly) monotone if f(x) is either (strictly) positively monotone or (strictly)
negatively monotone.

Caveat! The preceding definition is the mathematicians’ definition of increasing/decreasing
functions. However, some calculus texts define increasing/decreasing functions differently,
e.g. [Hoffmann et al.], where “increasing/descreasing functions” refer to the “strictly
increasing/descreasing functions” defined above. Similarly, some text refers to what we
called “strictly monotone/monotone” above as “monotone/weakly monotone”.

Theorem 6.2.1. Let f be a differentiable function on (a, b).

1. If f 0(x) � 0 for all x 2 (a, b), then f(x) is an increasing function.

2. If f 0(x) > 0 for all x 2 (a, b), then f(x) is a strictly increasing function on (a, b).

3. If f 0(x)  0 for all x 2 (a, b), then f(x) is a decreasing function.

4. If f 0(x) < 0 for all x 2 (a, b), then f(x) is a strictly decreasing function on (a, b).

Example 6.2.1. Show that f(x) = ex � x� 1 is a strictly increasing function on (0,1).

Solution. f 0(x) = ex � 1 > 1� 1 = 0. So f(x) is a strictly increasing function. ⌅

Remark. Because f(x) is a strictly increasing function, f(x) > f(0) = 0 for x > 0, i.e.

ex > 1 + x, for x > 0.

Exj = e-
✗

fix decreasing and

× , iz. strictly decreasing
.

>

c

f-
'

70
.

"t



Chapter 6: Application of Derivatives I 6-8

Procedure to determine intervals of increase/decrease of f

1. Find all c such that f 0(c) = 0 or f 0(c) is undefined. Divide the line into several intervals.

2. For each intervals (a, b) obtained in the previous step.

(a) If f 0(x) > 0, f(x) is a strictly increasing function (") on (a, b).

(b) If f 0(x) < 0, f(x) is a decreasing function (#) on (a, b).

Example 6.2.2. Find the intervals in which the function

f(x) = 2x3 + 3x2 � 12x� 7

is strictly increasing/strictly decreasing.

Solution.
f 0(x) = 6x2 + 6x� 12 = 6(x+ 2)(x� 1) = 0 ) x = �2, 1.

So we have 3 intervals: (�1,�2), (�2, 1), (1,1).

In (�1,�1), x+ 1 < 0, x� 1 < 0, so f 0(x) > 0.
In (�1, 1), x+ 1 > 0, x� 1 < 0, so f 0(x) < 0.
In (1,+1), x+ 1 > 0, x� 1 > 0, so f 0(x) > 0.

x (�1,�2) �2 (�2, 1) 1 (1,+1)
f 0(x) + 0 � 0 +

monotonicity " # "

⌅

(
&
g-
tied points of .

kindly

f
'

+
- 1-

*i = I I
'

→ i
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Figure 6.1: y = 2x3 + 3x2 � 12x� 7

Exercise 6.2.1. Find the intervals of strict increase and strict decrease of the function

f(x) = x7 � 2x5 + x3.

Solution.

f 0(x) = 7x6�10x4+3x2 = x2(7x2�3)(x2�1) = 0 ) x = 0,±1 and ±
r

3

7
⇡ ±0.654654.

x (�1,�1) (�1,�
q

3
7) (�

q
3
7 , 0) (0,

q
3
7) (

q
3
7 , 1) (1,+1)

f 0(x) + � + + � +
monotonicity " # " " # "

Figure 6.2: y = x7 � 2x5 + x3

i
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⌅

Definition 6.2.2. Let f(x) be a real-valued function defined on (a, b). A number c 2 (a, b) is
called a critical point of f if f 0(c) = 0 or f 0(c) does not exist.
The corresponding value f(c) is called a critical value for f(x).

Remark. The notion of critical points applies to more general functions, e.g. real functions
of several variables, complex functions etc. A critical point always lies in the domain of
the function. In the special case of real-valued functions of a single real variable, a critical
point is a real number; therefore it is also called a critical number. Let f(x) be a real-valued
function of a single real variable, and c 2 R be a critical point of f . Let C ⇢ R2 be the graph
of f in the x� y plane. The point (c, f(c)) 2 C is a critical point of the function ⇡y : C ! R
given by (x, y) 7! y.

Example 6.2.3.
f(x) = |x|.

We have proved

f 0(x) =

8
>><

>>:

�1, x < 0,

does not exist, x = 0,

1, x > 0.

) critical number: x = 0; corresponding critical value: 0

x (�1, 0) 0 (0,+1)
f 0(x) � 0 +

monotonicity # "

Example 6.2.4. f(x) = x4 � 4x3. Find all critical points and increasing & decreasing
intervals.

Solution.
f 0(x) = 4x3 � 12x2 = 4x2(x� 3) = 0 ) x = 0, 3.

critical points: x = 0, 3
corresponding critical values: f(0) = 0, f(3) = �27

x (�1, 0) 0 (0, 3) 3 (3,+1)
f 0(x) � 0 � 0 +

monotonicity # # "

⌅

tex> = { ×
when ✗ 70

- ✗ when ✗ - 0

•
does
not

of f- . exist

To when ✗ 1=0.
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6.2.2 Maxima & Minima of Functions

Definition 6.2.3. Let f(x) be a real-valued function with domain I. We say

1. f(x) has a relative maximum (or local maximum) at x = c if f(c) � f(x) for all
x 2 I near c.

2. f(x) has a global maximum (or absolute maximum) at x = c if f(c) � f(x) for all
x 2 I.

Similar definition for relative/global minimum.

Both maximum and minimum are called an extremum.

Remark. Global extremum ) Local extremum
But Global extremum : Local extremum

Remark. There is some confusion in the literature regarding whether a (local or global)
maximum/minimum of a function refers to an element in the domain or its corresponding
value (in the range). For most literature, the (absolute) maximum of a real function f(x)
refers to the value: M 2 R is said to be the (absolute) maximum if there exists an element c in
the domain D of f such that f(x)  f(c) 8x 2 D. To be clear, say that M is an (absolute)
maximum value of f ; and f attains its (absolute) maximum at c. Say e.g. f has local maxima
at x1, x2, . . . 2 D, with corresponding values f(x1), f(x2), . . .. Similarly for the notions of
(absolute/local) minimum.

Remark. Absolute maxima/minima may not exist. Consider the e.g. the function f : (0, 1] !
R given by f(x) = x. This f has an absolute maximum but has no absolute minimum. A
general notion is supremum/infimum. In the above example, the supremum of f is 1 and its
infimum is 0.

and local min .

but not abs min .

abs → '

Max
no absolute minimum

Lfexj can be arbitrarily close to 0 ,

but there is no c such that fcc)=o
'
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Question I: How to find relative extrema?

Theorem 6.2.2 (First Derivative Test: Relative Extrema).

Let f(x) be a continuous function which is differentiable where x 6= c. Then

1. f(x) attains a relative maximum at x = c if near the point c,

f 0(x) > 0 for x < c; f 0(x) < 0 for x > c.

2. f(x) attains a relative minimum at x = c if near the point c,

f 0(x) < 0 for x < c; f 0(x) > 0 for x > c.

3. f(x) attains no relative extremum at x = c if near the point c, f 0(x) has the same sign on
two sides of c.

Property
Sign of f 0(x)
to the left of c

Sign of f 0(x)
to the right of c

Relative maximum + �
Relative minimum � +

Not a relative extremum + +
Not a relative extremum � �



Chapter 6: Application of Derivatives I 6-13

Theorem 6.2.3. Let c 2 (a, b) and let f be a continuous function on (a, b) such that f 0 exists
and is continuous on (a, b)\{c}. Then f attains a relative extremum at x = c ) c is a
critical number, i.e. f 0(c) = 0 or f 0(c) does not exist.

Remark. f attains a relative extremum at x = c : c is a critical number.
For example, f(x) = x3, f 0(x) = 3x2, so x = 0 is a critical number. But f 0(x) > 0 on two
sides of x = 0, so f does not have a relative extremum at 0.

Example 6.2.5. Let
f(x) = 2x3 + 3x2 � 12x� 7.

Find all its relative maxima and relative minima.

Solution. Refer to the answer of Example 6.2.2, f 0(x) = 6x2 + 6x� 12. The critical numbers
are solutions of f 0(x) = 0, i.e x = �2 and x = 1.

x (�1,�2) �2 (�2, 1) 1 (1,+1)
f 0(x) + 0 � 0 +

(point where a relative maximum occurs, corresponding value): (�2, f(�2)) = (�2, 13)
(point where a relative minimum occurs, corresponding value): (1, f(1)) = (1, 14)

⌅

Example 6.2.6.

1. For Example 6.2.3 f(x) = |x|.
One critical number: x = 0, One relative minimum at 0, with corresponding value 0.

2. For example 6.2.4 f(x) = x4 � 4x3.
critical numbers: x = 0, 3, one relative minimum at 3, with corresponding value
�27.

Exercise 6.2.2. Let
f(x) = x7 � 2x5 + x3.

(see Exercise 6.2.1) Find all relative maxima and relative minima of f .

Answer:

Flood Max Flood min

f-
'

ex)={
- when ✗co

+ when ×>0

-
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(point where a relative maximum occurs, corresponding value) :

(�1, f(�1)) = (�1, 0); (
q

3
7 , f(

q
3
7) ⇡ (0.655, 0.092)

(point where a relative minimum occurs, corresponding value) :

(�
q

3
7 , f(�

q
3
7)) ⇡ (�0.655,�0.092); (1, f(1)) = (1, 0).

Note that f has no relative extremum at 0.

Question II: How to find absolute Max/Min?

Theorem 6.2.4. Suppose f : [a, b] ! R is a continuous function, then the absolute maximum
point and absolute minimum point exist for the graph of f (Theorem 3.2.2 Extreme Value
Theorem).

Remark. Note that the preceding theorem applies only when the domain of f is a closed finite
interval!

Procedures to find absolute max/min of continuous function f on [a, b]

1. Find all the critical numbers c1, c2, . . . , in (a, b).

2. Compute the values f(a), f(b), f(c1), f(c2), . . . ,
The maximum value corresponds to the absolute max.
The minimum value corresponds to the absolute min.

Example 6.2.7. Find the absolute maximum and absolute minimum of f(x) = x5 � 80x on
[�3, 4].

Solution. Since f(x) is continuous on [�3, 4], the absolute max/min can be reached by
extreme value theorem.

f 0(x) = 5x4 � 80 = 0 ) x = �2, 2.

Compute

f(�2) = 128, f(2) = �128,

f(�3) = �3, f(4) = 704.

The absolute minimum is �128, attained at x = 2; the absolute maximum is 704, attained at
x = 4.

⌅

•
51×4-163=547-4345- 4) = 51×7-47 4-+2)Cx

-2)

← abs . min .

← absolute maxi
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Figure 6.3: y = x5 � 80x over [�3, 4]

E-I fix = 1×1 defined on 5-1,21

one critical point : ✗ = 0

to ) = 0 ← abs min
.

attained at ✗=
a

f- c-D= I

f-G) = z . ← abs max. attained at
✗ = 2
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Chapter 7: Application of Derivatives II

Learning Objectives:

(1) Discuss concavity.

(2) Use the sign of the second derivative to find intervals of concavity.

(3) Locate and examine inflection points.

(4) Apply the second derivative test for relative extrema.

(5) Determine horizontal and vertical asymptotes of a graph.

(6) Discuss and apply a general procedure for sketching graphs.

7.1 Concavity and points of inflection

Intuitively: On the x� y plane: when a curve, or part of a curve, has the shape:

we say that the shape is concave downward. On the other hand, if it takes the shape

we say that it is concave upward.

Remark. In some textbooks “concave upward” is called concave up or convex; “concave

downward” is called concave down or concave.

Definition 7.1.1. If the function f(x) is differentiable on the interval (a, b), then the graph
of f is

7-1

concave
.

convex
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(i) strictly concave upward on (a, b) if f 0(x) is strictly increasing on the interval. In

particular, if f is second-differentiable, the condition is equivalent to f 00(x) > 0.

(ii) strictly concave downward on (a, b) if f 0(x) is strictly decreasing on the interval. In

particular, if f is second-differentiable, the condition is equivalent to f 00(x) < 0.

(iii) concave upward on (a, b) if f 0(x) is increasing on the interval. In particular, if f is

second-differentiable, the condition is equivalent to f 00(x) � 0.

(iv) concave downward on (a, b) if f 0(x) is decreasing on the interval. In particular, if f is

second-differentiable, the condition is equivalent to f 00(x)  0.

In case (i)/(iii), the function f is said to be strictly convex/convex; in case (ii)/(iv), f is said

to be strictly concave/concave.

Remark. 1. In some calculus texts, what we called “strictly convex/concave” above is

called “convex/concave”, and what we called “ convex/concave” above is called “weakly

convex/concave”

2. General definition of convexity/concavity of continuous curves on a plane via secant

lines:

• For a closed curve C ⇢ R2: C is strictly convex if all secant lines to C lies in the “inside”

except for the end points. e.g. A circle is strictly convex.

E.g. A piecewise convex curve:

• For the graph C of a continuous function f on the x� y plane: f is concave if all secant

lines to the graph do not intercept the “upside component” of R2\C. E.g. C = {(x, y) |f(x) =
1

x
, x < 0}.

Chitty convex)

(strictly concave)

( convex )

( concave)
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A test for shapes of graphs:

As x increases, f 0(x) is #
f 00(x) = �2 < 0 for strictly concave downward curve.

As x increases, f 0(x) is "
f 00(x) = 2 > 0 for strictly concave upward curve.

Definition 7.1.2. If f(x) changes strict concavity at some point c in the domain, then the

point (c, f(c)) on the x� y plane is called an inflection point of the graph of f .

concave.

1-1=-2-1 strictly
-decreasing.

f- " = -2

convex

f-'=zx strict increasing
f-
"
= 2
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Procedure for Determining Intervals of Concavity & Inflection Points:

Suppose the function f(x) is such that f 00
is piecewise continuous.

1. Find all c for which f 00(c) = 0 or f 00(c) does not exist, and divides the domain into

several intervals.

2. For each interval,

• if f 00(x) > 0, the graph of f(x) is strictly concave upward. (I.e. f is a convex

function.)

• if f 00(x) < 0, the graph of f(x) is strictly concave downward. (I.e. f is a concave

function.)

3. For all c found in step 1,

• if f 00(x) changes sign on two sides of c, then (c, f(c)) is an inflection point on the

graph of f ;

• otherwise, (c, f(c)) is not an inflection point on the graph of f .

Example 7.1.1.
f(x) = x3 + 1

f 00(x) = 6x = 0 ) x = 0.

• if x < 0, f 00(x) < 0, ) f is strictly concave on (�1, 0);

• if x > 0, f 00(x) > 0, ) f is strictly convex on (0,1).

Since f 00(x) changes signs on both sides of x = 0, (0, 1) is the unique inflection point on the

graph of f .

Example 7.1.2. Describe the concavity and find all inflection points of the graph of f(x) =
2x6 � 5x4 + 7x� 3.

Solution.

f 00(x) = 60x4 � 60x2 = 60x2(x2 � 1) = 60x2(x� 1)(x+ 1) = 0 ) x = 0,±1.

x (�1, 0) �1 (�1, 0) 0 (0, 1) 1 (1,+1)
f 00(x) + 0 � 0 � 0 +

concavity up(^) down(_) down(_) up(^)

Two inflection points: (�1,�13), (1, 1).
((0,�3) is not an inflection point!)

infection pt
d occurs.

f- 1=3×2
t
"
- ! +.

%

to)=o -11=1

•

1-1=12×120×3+7
nvm

To when -1-+0

- inflection pts occur
.

f-G) +2-5-7-3F- ±t+Iii-v -1

,

+

= -13

Y
'• > f- (1) = -2-5+7-3

-1
= 1

f" + - -

t.
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⌅

Remark.

•
c is a critical point () f 0(c) = 0 or f 0(c) does not exist

c is a critical point

⇢
(=
6=)

�
f 0

changes sign at c

•
(c, f(c)) is an inflection point on the graph of f () f 00

changes sign at c

(c, f(c)) is an inflection point on the graph of f

⇢
=)
6(=

�
f 00(c) = 0 or undefined

Theorem 7.1.1 (The Second Derivative Test: Relative Extrema).

Suppose f 0(a) = 0!

1. If f 00(a) < 0, then f has a relative maximum at a.

2. If f 00(a) > 0, then f has a relative minimum at a.

3. If f 00(x) = 0, we have no conclusion.

*

Ey , fix)=Ñ ✗=o is a critical

pt .f-' =3-5 doesn't
change sign
ato

if f
'

changes from + to - → local Max.

"
- + → local min .
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• •
• •

relative min relative min relative max relative max

f 0(a) = 0 f 0(a) does not exist f 0(a) does not exist f 0(a) = 0

1st test: � + � + + � + �

2nd test: f 00(a) > 0 Not Applicable Not Applicable f 00(a) < 0

Example 7.1.3.

f(x) =
1

30
x6 � 1

12
x4.

Use the first and second derivative test to study the relative extrema.

Solution.

f 0(x) =
1

5
x5 � 1

3
x3 =

1

5
x3(x+

r
5

3
)(x�

r
5

3
) = 0 ) x = �

r
5

3
, 0,

r
5

3

f 00(x) = x2(x+ 1)(x� 1).

x (�1,�
q

5
3) �

q
5
3 (�

q
5
3 , 0) 0 (0,

q
5
3)

q
5
3 (

q
5
3 ,+1)

f 0(x) � 0 + 0 � 0 +

f 00(x) f 00 > 0 f 00 = 0 f 00 > 0

1st test: relative min relative max relative min

2nd test: relative min inconclusive relative min

⌅

Exercise 7.1.1. Apply the first and the second derivative tests to find the local max-

ima/minima and the global maximum/minimum of f(x) = x3 � 3x.

✗
- Es
- - - +

✗+B-
-

+ + +

✗
3
-

,

- t +

: i

✗
gili- E) f

'

-

-E. + - Est

= ✗4-5=54×2-1)
*

E.ED at) ICED

f-
'
= 35-3=31×+11×-1) critical pts : ✗ = -1 , I

+>
to find global maximin. :

✗- i
-

i
-

f-a) , f-C-1), t.im/-cx)-- to
f ' + y

-

it p p x→b

local max local min. finite lion fad =-D
e- I ✗ → is

f- " = bx f-
"

(4) = -6<0. f-
"

a) -6>0 so global maximin don't exist.
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7.2 Curve sketching

Example 7.2.1. Sketch the graph of y = f(x) = 1 + 1
x�1 .

Solution.

Step 1. Analyze f(x).

1. domain: {x 2 R |x 6= 1}

2. x, y intercepts:

Let x = 0, then y = 0;

Let y = 0, then x = 0.

) only one intercept: (0, 0)

3. vertical and horizontal asymptotes:

lim
x!1+

f(x) = +1, lim
x!1�

f(x) = �1 ) vertical asymptote: x = 1

lim
x!+1

f(x) = 1, lim
x!�1

f(x) = 1 ) horizontal asymptote: y = 1.

Step 2. Analyze f 0(x).

f 0(x) = � 1

(x� 1)2
, x 6= 1.

1. interval where f is strictly increasing: none (f 0(x) < 0 in the domain)

interval where f is strictly decreasing: (�1, 1), (1,+1)

2. critical points of f : none (x = 1 is not in the domain)

3. relative extrema of f : none

Step 3. Analyze f 00(x).

f 00(x) =
2

(x� 1)3
, x 6= 1.

1. interval where f is strictly convex: (1,+1) (f 00 > 0)

interval where f is strictly concave: (�1, 1) (f 00 < 0)

2. inflection points on the graph: none (x = 1 is not in the domain)

:|
!

-
- i - - - 1- - - - -go.mg#-:

approaches
fco)= It -1-4=0

•

;
'

:

- µ ¥, -0 c⇒
. -1--0 y
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